光环大数据带你SQL从熟练到掌握

编辑:光环大数据 来源: 互联网 时间: 2017-11-29 14:30 阅读:

我们在上一篇《SQL,从入门到熟练》文章已经掌握了除Join外的常用语法和函数,今天会通过一系列的练习彻底掌握SQL。

 

我们知道,数据库由多张表组成,表与表之间可以实现关联。

 

 

 

上图就是一个简单的关联模型:

 

Students.addressId = Address.id
Students.id = Scores.studentId
Scores.courseId = Courses.id

 

那么,如何在SQL查询语句中将两个表联接起来?我们将运用最重要的语法Join。

 

select * from Students
join Address on Students.addressId = Address.id

 

上面语句,join将Students和Address两表关联,关联需要一个或多个字段作为联接桥梁。例子中的桥梁就是addressid,我们使用on语句,将Students表的addressId字段和Address的id字段匹配。

 

这里需要注意的是,因为字段可能重名,所以一旦使用了Join,字段前应该加上表名,如Students.addressId和Address.id ,这种用法是为了字段的唯一性,否则遇到重名,系统不知道使用哪个字段,就会报错。

 

select * from Students as s
join Address as a on s.addressId = a.id

 

上图是更优雅的写法,将表命名为一个缩略的别名,避免了语句过于冗余。不要使用拼音做别名,不是好习惯。

 

Join语法有很多不同的变形,Left Join,Outer Join等,新人很容易混淆。这个我们可以用数学中的交集和并集掌握。

 

 

 

上图很清晰地解释了各Join语法。

 

Inner Join最常见,叫做内联接,可以缩写成Join,找的是两张表共同拥有的字段。

 

Left Join叫做左联接,以左表(join符号前的那张表)为主,返回所有的行。如果右表有共同字段,则一并返回,如果没有,则为空。

 

我们以W3School上的数据为例:

 

 

 

select Persons.LastName, Persons.FirstName, Orders.OrderNo
from Persons
left join Orders on Persons.Id_P=Orders.Id_P
order by Persons.LastName

 

于是输出结果为:

 

 

 

结果集中,Bush那一行的OrderNo为空,就是因为Id_P无法匹配上,返回了Null。如果改成Inner join,则不会返回整个Bush所在行。这是Inner Join和Left Join的区别,也是面试中经常会问到的题目。

 

Right Join和Left Join没有区别,A Left Join B 等价于 B Right Join A。

 

Full Join叫做全联接,也叫做Full Outer Join,意思是不管有的没的,只要存在,就返回。

还是以之前的例子演示,下面是Full Join:

 

 

 

最后两行就是所谓的「不管有的没的,只要存在字符串,就返回」的结果,它们Id_P并没有匹配上,但还是给出了返回,只是为空字段不同。

 

这三者的关系,我们可以理解为:A Full Join B = A Left Join B + A Right Join B - A Inner Join B,这就是数学上的集合运算,虽然SQL的表并不能加减法。如果还一知半解,看最上面的Join示例图,用面积的角度看也明白了。

 

通过上面的例子,我们已经掌握了Join的主流语法,其他无非是变种。比如加约束条件 where XX is null,这里的XX可以是结果为空的字段。拿上文Left Join的例子演示:

 

select Persons.LastName, Persons.FirstName, Orders.OrderNo
from Persons
left join Orders
on Persons.Id_P=Orders.Id_P
where Orders.Id_P is Null

 

最终返回的结果就是Bush这一行。

 

当我们有多个字段要匹配时,on后面可以通过 and 进行多项关联。

 

select * from A
join B on A.name = B.name and A.phone = B.phone

 

上图就是一个简单的适用场景,将用户姓名和手机号进行多项关联。它也可以加入其他的条件判断。

 

select * from A
join B on A.name = B.name and A.phone = B.phone and B.sex = '男

 

我们再加一个and,将B表的用户性别限定为男。这种用法等价于where B.sex = '男'。当数据量大到一定程度,通过这种约束条件,能优化查询性能。

 

到这里,SQL的常用语法已经讲解的差不多了,我们进行实战吧。leetcode.com网站是知名的算法竞赛题,去上面刷SQL吧。

 

注册完后进入leetcode.com/problemset/database页面。那里有几道MySQL题目。因为时间关系,我只讲解Join相关,大家有兴趣可以刷其他题,都不难的。SQLZoo也能刷,就是页面丑了点,所以我十分感动地拒绝了它。

 

 

 

我们从Easy开始,选择题目Combine Two Tables。

 

 

 

红色字符是表名,第一列是字段名,第二列是数据类型。题目希望我们通过两张表输出:FirstName, LastName, City, State四个字段。

 

单纯的Inner Join就能完成了。记住噢,答案需要完全一致,也就是说最终的结果必须是四个字段,不能多不能少,顺序也不能乱,大小写要严格。这一题大家自己做吧。通过后会有个绿色的Accepted提示。

 

接下来选择Medium难度的Department Highest Salary。

 

 

 

这里有两张表,员工表和部门表,我们希望找出各个部门的最高薪水。

 

部门信息单独为一张表,首先我们需要Join关联起来,将部门分组求出最大值:

 

select d.Id,  #这是部门ID
           d.Name as Name,  #这是部门名字
           max(e.Salary) as Salary  #这是最高薪水
from Department d
join Employee e
on e.DepartmentId = d.Id
group by d.Id

 

上述的查询语句找出了最高薪水的部门,我们是否能直接使用其作为答案?不能。这里有一个逻辑的小陷阱,当最高薪水非单个时,使用max会只保留第一个,而不是列举所有,所以我们需要更复杂的查询。

 

因为已经有了各部门最高薪水的数据,可以将它作为一张新表,用最高薪水关联雇员表,获得我们最终的答案。

 

 

 

上面就是最终解法(#是解释给你们看的,中文会报错的),当然解法应该不是唯一的,大家有兴趣可以继续研究。

 

最终,我们选Hard模式的Department Top Three Salaries。

 

范例数据没有一丁点变化,它需要我们求出各部门薪水前三的数据。如果最高薪水只有两个,则输出两个。

 

 

 

上图是给的范例结果。

 

排名前三的数据,我们可以使用order by 降序排列出来,然后通过limit 限定为3,但是新的问题是:既要各部门前三,也存在排名并列的情况。此时order by就无能为力了。

如果是SQL Server或者Oracle,我们可以使用row_number分组排序函数,但是MySQL没有,其中的一种思路是利用set语法设置变量,间接应用row_number。我们还能使用另外一种思路。

 

select * from Employee as e
where  (
    select count(distinct e1.Salary) 
    from Employee e1
    where e1.Salary > e.Salary
    and e1.DepartmentId = e.DepartmentId
    ) < 3

 

上述的例子巧妙地借用了子查询。在where语句中,我们用子表e1与父表(外表)e进行比对。SQL是允许子查询的表和父查询的表进行运算的。

 

e1.DepartmentId = e.DepartmentId作为条件约束,避免跨部门。e1.Salary > e.Salary则是逻辑判断,通过count函数,逐行计算出e表中有多少薪水比e1的薪水低。

 

 

 

因为e1表和e表实际上是等价的。所以返回的count(distinct e1.Salary) 代表e1表有中多少薪水比e表的高,上图的例子,答案是2(90000和85000比它高)。如果是0,则代表e表中该行薪水最高(没有比它高的),1代表第二高,2代表第三高。于是便过滤出Top 3的薪水。最后通过join计算出结果。

 

 

 

在实际查询过程中,不建议大家使用这种运算方式,因为运算效率不会快。其实换我,我更可能group by后导出结果用Excel处理。

 

到这里,大家对Join已经有一个大概的了解了吧。真实的数据查询场景中,Join会用到很多,业务复杂用五六个Join也是常态,如果算上各类逻辑处理,SQL代码行数可以破百。这时候,考验的就是熟练度了。

 

SQL只要多加训练,并不是一门很难掌握的语言。除了技巧,还要看你对业务表的熟悉程度,一般公司发展大了,百来张表很正常,各类业务逻辑各种Join,各字段的含义,这是同样要花费时间的苦功夫。

 

希望大家对SQL已经有一个初步的掌握了。SQL学好了,以后应用大数据的Hive和SparkSQL也是轻而易举的。

 

接下来,我们将要进入第五周的大魔王课程,统计学,从入门到放弃,哈哈哈。

 

 

  大数据分析大数据分析师大数据培训哪家好大数据培训靠谱吗大数据培训排行榜,就选光环大数据!

 


大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。 更多问题咨询,欢迎点击------>>>>在线客服

你可能也喜欢这些

在线客服咨询

领取资料

X
立即免费领取

请准确填写您的信息

点击领取
#第三方统计代码(模版变量) '); })();
'); })();