光环大数据:关于深度学习的五个思考

编辑:光环大数据 来源: 互联网 时间: 2017-11-28 14:14 阅读:

 

最重要是——深度学习真的给我们带来影响了吗?

 

答案显而易见。

 

任何一场革命,绝不是以敲锣打鼓的方式,来到你的身边。等到某一天,你忽然发现快要天翻地覆时,再去看,发现自己已被别人抛弃了。

 

过去以端为中心的技术革命,不能说结束了,但已不再是时代的风口。

 

技术,进入了一场以数据为驱动的革命。

 

互联网不再只是一张虚拟的网,而更像是一个大数据库。大量的数据,沉甸甸,就在那里。没有人知道,怎么把这些数据,更加完整清晰的表达出来。

 

我们需要重新思考技术的致胜点。

 

怎么思考呢?我讲几个关键点。

 


1、数据和运算能力,变得越来越重要。

 

 

孔子说过一句话:“学而不思则罔,思而不学则殆”。


先说,学而不思则罔。你拿了很多知识,不深度学习,不行。如果你没有运算能力,有了一堆数据,算不出来,没用。不是深度越深,效果越好。

 

这是个复杂的问题。需要不停算,不停实验。

 

今天,整个深度学习的理论,还不够成熟,依然落后于实践。更多时候,只能靠试。此时,运算能力,就变得非常关键。

 

假如,别人做一次运算,要两个礼拜,而你只需要一天或2个小时。同样时间内,你可以做更多实验,积累更多宝贵经验,迭代速度也更快。

 

这就好像,两个人起点一样,但由于迭代速度不同,导致了最后成就的千差万别。每一次迭代,相当于你的一次翻版。你是一天迭代一次,还是一年迭代一次。你对自己翻版本的速度有多快,决定你最后以多大的成果超过对手。

 

思而不学则殆呢?简单说,如果你没有数据,一点用都没有。

 

这个时代越来越需要海量数据。数据量越大越好。甚至于,我们以前被认为不是很关键的数据,都有可能灌进去,再看效果。

 

这才有了一句流行语——Welcome to the GPU world.

 

GPU最早为快速满足增长的图形计算需求而设计。它不同于CPU,在多核多线程处理上浮点性能更佳,使得它在图形界的并行运算,变得超强。

 

早期,谷歌发表了一篇论文说——深度学习的结果,要跑在英伟达的GPU上。很快,做芯片起家的英伟达,其公司股价开始蹭蹭蹭一路上涨,涨了好几十块。

 

然而,如果今天,你还以为英伟达是个显卡公司,那就大错特错了。如今汽车的防撞系统,警告系统,以及无人驾驶采用的双目视觉图像处理,英伟达是第一大提供商。它其实变成了一家人工智能公司。

 

说到这,大家可能也会奇怪——今天关于无人驾驶,辅助驾驶的新闻越来越多,也有越来越多的公司在做,为啥呢?

 

核心就在于,深度学习极大降低了这一门槛。只要你能拿到足够数据,就可能实现对物体的各种判断。

 

本质也带来了一个技术上弯道超车的好机会。很多公司辛苦积累的软件技术直接作废了。包括IBM做了语音输入好多年,上来就被深度学习超越了。尤其当谷歌进入语音输入时,一下就超越了IBM多年的技术积累。与此同时,谷歌还有足够多的数据,以及足够多的语音样本,不停输入。

 

算法为核心的竞争力,正转换成数据为核心竞争力。

 

我个人觉得,甚至有些算法会消失掉。但,并不是说算法不重要。只是神经网络的核心算法,提升起来太难。

 

现在大家都把专注度放在了数据和运算。尤其在深度学习里,获取足够多的数据,就有机会产生更好的结果。神经网络本身差异不会很大,关键比的是——谁能把这些数据用好,并快速计算。

 

数据变得越来越重要。尤其在深度学习里,获取足够多的数据,就有机会产生更好的结果。神经网络本身差异不会很大,关键比的是——谁能把这些数据用好,并快速计算。

 

 

2、公司研发结构会发生很多改变,数据获取和数据标注会变得非常重要。



中国在这场竞争中,还是有很大机会。能够轻易获取的互联网数据,以及低成本的众包劳动,将为中国公司带来训练所需的计算和人力资源。

 

第一,数据获取的量级。尽管美国整个技术的前沿性很好,问题在于——硅谷一家小公司拿到的数据,和一家中国高速发展的互联网公司拿到的数据,不可同日而语。

 

第二,数据标注的成本。在美国,要搞数据标注,肯定很累,多贵啊!但在中国,到珠海或成都随便找300个人,去帮你标注,成本很低。ImageNet图像分类大赛,中国人取得的成绩明显突出。国外,微软或谷歌参赛,都是几个人去做图像标注和算法验证。而中国可以组织足够多的人去做标注。

 

我认为,ImageNet大赛,未来的世界冠军都会来自中国。

 

 

3、并行异构计算的人才,变成核心竞争力。



过去计算领域都是以CPU为中心的计算模式。深度学习要将CPU和GPU两个加起来。这是两个技术的计算模型,是异构的模型。

 

为什么要异构?因为GPU是并行的。它需要用来显示。为了让你的屏幕刷新保持更快更流畅,就要把GPU分成很多个小的运算单元。每一个运算单元,负责屏幕某一块具体区域的刷新。而大量这样的运算单元都包含在一个GPU当中。要想跑得快,就得把计算逻辑放在CPU中,同时再把你准备好的数据拷贝到GPU中。然后呢?GPU再用并行的方式,计算准备好的这些数据。这就是异构的模型。

 

这个模型,是计算体系,也是硬件体系的一次革命,是真正的技术革命。

 

举个例子。现在要完成一个复杂的大型任务,需分割在100台机器,让它们分开跑,又同时共同执行同一个全局任务,需要一个数学上严格的方法来完成。这意味着,每一次计算更新的时候,都要把大数据刷一遍,刷几千遍是何其难的事情。几十亿个参数的深度学习模型,每一次迭代都要把参数刷一遍。尤其数据量足够大时,这是很难的。

 

因此,能否调动大量的运算资源,就会成为核心竞争力。我的判断是,未来整个研发结构——重数据,重运算,这两点,必然出现。

 

 

4、语音和视觉,将成为下一代交互模式。



可能大家没有注意一个数据,谷歌已经有20%的搜索来自语音。这是很可怕的一个趋势。

 

我认为,语音和视觉会是下一代的交互模式。

 

过去我们从PC时代的十指模式(电脑键盘),走到今天的拇指模式(手机),未来一定是自然模式(语音和视觉)。

 

因为,太多的交互都会变得很简单。有多简单呢?只会用接触的方式去完成。今天之所以还没有大规模到来,其实是技术不够成熟。

 

亚马逊发布Echo时,为什么谷歌那么在意?我觉得很重要的一点,就是它通过300万台的设备,不停地拿数据——用户的每一次说话,都是一次新的数据。这个数据足够多,又反过来加深它的语音能力。

 

交互模式的变化,不仅改变了产品,也影响了数据方式。

 

 

5、深度学习在各个领域产生的变革才刚刚开始。



无论是现阶段的内容个性化推荐,还是未来输入方式的改变,还有太多地方,可以被深度学习改变。

 

比如人脸识别。今天你用支付宝,或招商银行客户端,都会让你扫一扫,准确率已经相当高了。高到什么程度呢?有一家公司专门为海关提供人脸识别服务。以前用人工查看,看两个小时后就会出错,加上深度学习算法的系统,极大降低了人脸识别的出错率。

 

我认为,只要需求越多,它就会越来越准。

 

比如小米手机出了面孔功能。根据人脸识别进行照片分类。已经可以达到92%的准确率了。包括猎豹。我们在全球有6亿月度活跃用户,一旦建立起深度学习的核心技术能力,猎豹向很多领域的扩展和应用结合就会变成可能。

 

如果你把深度学习看成一种“工具”,就会发现——它有很多和其它领域,包括传统行业相互结合的机会。

 

漫漫长路,才刚刚开始。

 

  大数据分析大数据分析师大数据培训哪家好大数据培训靠谱吗大数据培训排行榜,就选光环大数据!


大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。 更多问题咨询,欢迎点击------>>>>在线客服

你可能也喜欢这些

在线客服咨询

领取资料

X
立即免费领取

请准确填写您的信息

点击领取
#第三方统计代码(模版变量) '); })();
'); })();