AI与大数据在云安全防御的探索实践
AI与大数据在云安全防御的探索实践,随着云服务的普及,云安全面临的挑战相较于传统IT时代更加复杂,更多企业数据放到云服务器,其巨大的资产价值吸引着大批黑客的攻击与窥窃,针对云安全的攻与防可以说是一刻也未停止过。今年5月,一场名为WannaCry的敲诈病毒在全球范围内的蔓延,让云安全防御的紧迫性和重要性提到了台前。
云厂商们试图通过人为监测、规则式验证等方法来防止恶意Bot、抵御CC攻击,但似乎收效甚微。2017年,人工智能与大数据的落地应用,为云端的安全困境重新找到了突破口,深度学习、数据分析成为新防御的“核”武器,那么,开发者该如何利用这些智能技术进行安全监控与防御部署呢?在刚刚过去的UCloud技术沙龙上,来自Cloud、摩拜、新思科技的技术专家,提出了不同的解决方案。
UCloud安全中心高级研发工程师苗东华做了开场演讲,他从大数据在实时入侵检测的应用实践、如何实现大数据安全规则引擎以节省安全运营的学习和使用成本、高可用的大数据处理架构的构建三个维度分享了大数据在安全检测方面的应用。
一般而言,入侵与风险需要检测的项目有很多种,包括木马检测、异常登录/暴力破解、软件安全基线、web安全基线、反连shell等等。因此,企业每天产生的安全数据种类多也异常繁多,据不完全统计,一家企业每天产生的安全数据需以千亿计。入侵检测的历史追述时间长,与之对应的,入侵和风险监测告警响应时间却是越短越好,这些都是入侵检测面临的巨大挑战。
UCloud安全中心采用大数据技术构建了一套成熟稳定的入侵与风险检测的系统。如下图所示,通过入侵及风险分析规则引擎、离线查询分析与历史操作回溯等,智能化的完成监测系统的调度、监控与告警系列工作,省去大量人工监测与审核的时间。
同时,在入侵检测的手段上,UCloud引入了规则引擎,运营以sql及黑白名单的形式编写规则发送给mongodb,Engines从DB拉规则或者写入告警,研发人员再以http格式提交变更给到client。这样一套完整的规则引擎架构,能够避免检测数据繁杂、入侵和风险检测规则变更频繁、动态增删黑白名单等带来的检测效率底下问题,更高效的完成海量数据的检测与监控。
韩葆:基于云的安全测试
云安全测试作为一种相对较新的服务模型,允许IT安全测试服务提供商在云中执行按需应用程序安全测试。因此,基于云的应用程序安全测试的目标是使这些服务提供者能够以安全的方式利用云技术和解决方案。新思科技软件质量与安全产品线业务负责人韩葆现场分享了一些基于云的解决方案的趋势、挑战和解决方案,以及云服务供应商的可靠性与安全性保障技术。
大数据时代,大数据培训,就选光环大数据、数据分析师培训机构!
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。 更多问题咨询,欢迎点击------>>>>在线客服!