Hopfield神经网络模型 光环人工智能培训
光环大数据作为国内知名的人工智能培训的机构,帮助无数学员稳健、扎实的提升人工智能技术,来光环大数据学人工智能,高薪就业不是梦!
Hopfield网络是神经网络发展历史上的一个重要的里程碑。Hopfield神经网络是1982年美国物理学家J.Hopfield首先提出来的,属于反馈神经网络类型。与前向型神经网络不同,前向神经网络不考虑输出与输入之间在时间上的滞后影响,其输出与输入之间仅仅是一种映射关系。而Hopfield网络则不同,它采用反馈连接,考虑输出与输入在时间上的传输延迟,所表示的是一个动态过程,需要用差分或微分方程来描述,因而Hopfield网络是一种由非线性元件构成的反馈系统,其稳定状态的分析比前向神经网络要复杂得多。
Hopfield用能量函数的思想形成了一种新的计算方法,阐明了神经网络与动力学的关系,并用非线性动力学的方法来研究这种神经网络的特性,建立了神经网络稳定性判据,并指出信息存储在网络各个神经元之间的连接上,形成了所谓的Hopfield网络。 Hopfield还将该反馈网络同统计物理中的lsing模型相类比,把磁旋的向上和向下方向看成神经元的激活和抑制两种状态,把磁旋的相互作用看成神经元的突触权值。这种类推为大量的物理学理论和许多的物理学家进入神经网络领域铺平了道路。1984年,Hopfield设计并研制了Hopfleld网络模型的电路,指出神经元可以用运算放大器来实现,所有神经元的连接可用电子线路来模拟,称之为连续Hopfield网络。使用该电路,Hopfleld成功地解决了旅行商(TSP)计算难题(优化问题)。
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。 更多问题咨询,欢迎点击------>>>>在线客服!