径向基函数神经网络-径向基函数网络 光环人工智能培训

编辑:光环大数据 来源: 互联网 时间: 2018-01-26 17:51 阅读:

光环大数据作为国内知名的人工智能培训的机构,帮助无数学员稳健、扎实的提升人工智能技术,来光环大数据学人工智能,高薪就业不是梦!

1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法。1988年, Moody和 Darken[10,11]提出了一种神经网络结构,即RBF神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
      RBF网络的结构与多层前向网络类似,它是一种三层前向网络。输入层由信号源结点组成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数是RBF,它是对中心点径向对称且衰减的非负非线性函数;第三层为输出层,它对输人模式的作用作出响应。从输人空间到隐含层空间的变换是非线性的,而从隐含层空间到输出层空间变换是线性的。
      RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可将输入矢量直接(即不需要通过权连接)映射到隐空间。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。由此可见,从总体上看,网络由输人到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。这样网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。


大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。 更多问题咨询,欢迎点击------>>>>在线客服

你可能也喜欢这些

在线客服咨询

领取资料

X
立即免费领取

请准确填写您的信息

点击领取
#第三方统计代码(模版变量) '); })();
'); })();