Hadoop入门-WordCount示例

编辑:光环大数据 来源: 互联网 时间: 2017-11-09 11:56 阅读:

WordCount的过程如图,这里记录下入门的过程,虽然有很多地方理解的只是皮毛。

hadoop的安装

安装比较简单,安装完成后进行单机环境的配置。

hadoop-env.sh:指定JAVA_HOME。

# The only required environment variable is JAVA_HOME.  All others are# optional.  When running a distributed configuration it is best to# set JAVA_HOME in this file, so that it is correctly defined on# remote nodes.# The java implementation to use.export JAVA_HOME="$(/usr/libexec/java_home)"

core-site.xml:设置Hadoop使用的临时目录,NameNode的地址。

<configuration>    <property>        <name>hadoop.tmp.dir</name>        <value>/usr/local/Cellar/hadoop/hdfs/tmp</value>    </property>    <property>        <name>fs.default.name</name>        <value>hdfs://localhost:9000</value>    </property></configuration>

hdfs-site.xml:一个节点,副本个数设为1。

<configuration>    <property>        <name>dfs.replication</name>        <value>1</value>    </property></configuration>

mapred-site.xml:指定JobTracker的地址。

<configuration>    <property>        <name>mapred.job.tracker</name>        <value>localhost:9010</value>    </property></configuration>

启动Hadoop相关的所有进程。

➜  sbin git:(master) ./start-all.shThis script is Deprecated. Instead use start-dfs.sh and start-yarn.sh16/12/03 19:32:18 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableStarting namenodes on [localhost]Password:localhost: starting namenode, logging to /usr/local/Cellar/hadoop/2.7.1/libexec/logs/hadoop-vonzhou-namenode-vonzhoudeMacBook-Pro.local.outPassword:localhost: starting datanode, logging to /usr/local/Cellar/hadoop/2.7.1/libexec/logs/hadoop-vonzhou-datanode-vonzhoudeMacBook-Pro.local.outStarting secondary namenodes [0.0.0.0]Password:0.0.0.0: starting secondarynamenode, logging to /usr/local/Cellar/hadoop/2.7.1/libexec/logs/hadoop-vonzhou-secondarynamenode-vonzhoudeMacBook-Pro.local.out16/12/03 19:33:27 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicablestarting yarn daemonsstarting resourcemanager, logging to /usr/local/Cellar/hadoop/2.7.1/libexec/logs/yarn-vonzhou-resourcemanager-vonzhoudeMacBook-Pro.local.outPassword:localhost: starting nodemanager, logging to /usr/local/Cellar/hadoop/2.7.1/libexec/logs/yarn-vonzhou-nodemanager-vonzhoudeMacBook-Pro.local.out

(可以配置ssh无密码登录方式,否则启动hadoop的时候总是要密码。)

看看启动了哪些组件。

➜  sbin git:(master) jps -l5713 org.apache.hadoop.hdfs.server.namenode.NameNode6145 org.apache.hadoop.yarn.server.nodemanager.NodeManager6044 org.apache.hadoop.yarn.server.resourcemanager.ResourceManager5806 org.apache.hadoop.hdfs.server.datanode.DataNode5918 org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode

访问 http:// localhost:50070/ 可以看到DFS的一些状态。

WordCount 单词计数

WordCount就是Hadoop学习的hello world,代码如下:

public class WordCount {    public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {        private final static IntWritable one = new IntWritable(1);        private Text word = new Text();        public void map(LongWritable key, Text value, Context context)                throws IOException, InterruptedException {            String line = value.toString();            StringTokenizer tokenizer = new StringTokenizer(line);            while (tokenizer.hasMoreTokens()) {                word.set(tokenizer.nextToken());                context.write(word, one);            }        }    }    public static class Reduce extends            Reducer<Text, IntWritable, Text, IntWritable> {        public void reduce(Text key, Iterable<IntWritable> values,                           Context context) throws IOException, InterruptedException {            int sum = 0;            for (IntWritable val : values) {                sum += val.get();            }            context.write(key, new IntWritable(sum));        }    }    public static void main(String[] args) throws Exception {        Configuration conf = new Configuration();        Job job = new Job(conf, "wordcount");        job.setJarByClass(WordCount.class);        job.setOutputKeyClass(Text.class);        job.setOutputValueClass(IntWritable.class);        job.setMapperClass(Map.class);        job.setReducerClass(Reduce.class);        /**         * 设置一个本地combine,可以极大的消除本节点重复单词的计数,减小网络传输的开销         */        job.setCombinerClass(Reduce.class);        job.setInputFormatClass(TextInputFormat.class);        job.setOutputFormatClass(TextOutputFormat.class);        FileInputFormat.addInputPath(job, new Path(args[0]));        FileOutputFormat.setOutputPath(job, new Path(args[1]));        job.waitForCompletion(true);    }}

构造两个文本文件, 把本地的两个文件拷贝到HDFS中:

➜  hadoop-examples git:(master) ✗ ln /usr/local/Cellar/hadoop/2.7.1/bin/hadoop hadoop➜  hadoop-examples git:(master) ✗ ./hadoop dfs -put wordcount-input/file* inputDEPRECATED: Use of this script to execute hdfs command is deprecated.Instead use the hdfs command for it.16/12/03 23:17:10 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable➜  hadoop-examples git:(master) ✗ ./hadoop dfs -ls input/      DEPRECATED: Use of this script to execute hdfs command is deprecated.Instead use the hdfs command for it.16/12/03 23:21:08 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableFound 2 items-rw-r--r--   1 vonzhou supergroup         42 2016-12-03 23:17 input/file1-rw-r--r--   1 vonzhou supergroup         43 2016-12-03 23:17 input/file2

编译程序得到jar:

mvn clean package

运行程序(指定main class的时候需要全包名限定):

➜  hadoop-examples git:(master) ✗ ./hadoop jar target/hadoop-examples-1.0-SNAPSHOT.jar com.vonzhou.learnhadoop.simple.WordCount input output16/12/03 23:31:19 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable16/12/03 23:31:20 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id16/12/03 23:31:20 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=16/12/03 23:33:21 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.16/12/03 23:33:21 INFO input.FileInputFormat: Total input paths to process : 216/12/03 23:33:21 INFO mapreduce.JobSubmitter: number of splits:216/12/03 23:33:22 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local524341653_000116/12/03 23:33:22 INFO mapreduce.Job: The url to track the job: http://localhost:8080/16/12/03 23:33:22 INFO mapreduce.Job: Running job: job_local524341653_000116/12/03 23:33:22 INFO mapred.LocalJobRunner: OutputCommitter set in config null16/12/03 23:33:22 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 116/12/03 23:33:22 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter16/12/03 23:33:22 INFO mapred.LocalJobRunner: Waiting for map tasks16/12/03 23:33:22 INFO mapred.LocalJobRunner: Starting task: attempt_local524341653_0001_m_000000_016/12/03 23:33:22 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 116/12/03 23:33:22 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.16/12/03 23:33:22 INFO mapred.Task:  Using ResourceCalculatorProcessTree : null16/12/03 23:33:22 INFO mapred.MapTask: Processing split: hdfs://localhost:9000/user/vonzhou/input/file2:0+4316/12/03 23:33:22 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)16/12/03 23:33:22 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 10016/12/03 23:33:22 INFO mapred.MapTask: soft limit at 8388608016/12/03 23:33:22 INFO mapred.MapTask: bufstart = 0; bufvoid = 10485760016/12/03 23:33:22 INFO mapred.MapTask: kvstart = 26214396; length = 655360016/12/03 23:33:22 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer16/12/03 23:33:22 INFO mapred.LocalJobRunner: 16/12/03 23:33:22 INFO mapred.MapTask: Starting flush of map output16/12/03 23:33:22 INFO mapred.MapTask: Spilling map output16/12/03 23:33:22 INFO mapred.MapTask: bufstart = 0; bufend = 71; bufvoid = 10485760016/12/03 23:33:22 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214372(104857488); length = 25/655360016/12/03 23:33:22 INFO mapred.MapTask: Finished spill 016/12/03 23:33:22 INFO mapred.Task: Task:attempt_local524341653_0001_m_000000_0 is done. And is in the process of committing16/12/03 23:33:22 INFO mapred.LocalJobRunner: map16/12/03 23:33:22 INFO mapred.Task: Task 'attempt_local524341653_0001_m_000000_0' done.16/12/03 23:33:22 INFO mapred.LocalJobRunner: Finishing task: attempt_local524341653_0001_m_000000_016/12/03 23:33:22 INFO mapred.LocalJobRunner: Starting task: attempt_local524341653_0001_m_000001_016/12/03 23:33:22 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 116/12/03 23:33:22 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.16/12/03 23:33:22 INFO mapred.Task:  Using ResourceCalculatorProcessTree : null16/12/03 23:33:22 INFO mapred.MapTask: Processing split: hdfs://localhost:9000/user/vonzhou/input/file1:0+4216/12/03 23:33:22 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)16/12/03 23:33:22 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 10016/12/03 23:33:22 INFO mapred.MapTask: soft limit at 8388608016/12/03 23:33:22 INFO mapred.MapTask: bufstart = 0; bufvoid = 10485760016/12/03 23:33:22 INFO mapred.MapTask: kvstart = 26214396; length = 655360016/12/03 23:33:22 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer16/12/03 23:33:22 INFO mapred.LocalJobRunner: 16/12/03 23:33:22 INFO mapred.MapTask: Starting flush of map output16/12/03 23:33:22 INFO mapred.MapTask: Spilling map output16/12/03 23:33:22 INFO mapred.MapTask: bufstart = 0; bufend = 70; bufvoid = 10485760016/12/03 23:33:22 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214372(104857488); length = 25/655360016/12/03 23:33:22 INFO mapred.MapTask: Finished spill 016/12/03 23:33:22 INFO mapred.Task: Task:attempt_local524341653_0001_m_000001_0 is done. And is in the process of committing16/12/03 23:33:22 INFO mapred.LocalJobRunner: map16/12/03 23:33:22 INFO mapred.Task: Task 'attempt_local524341653_0001_m_000001_0' done.16/12/03 23:33:22 INFO mapred.LocalJobRunner: Finishing task: attempt_local524341653_0001_m_000001_016/12/03 23:33:22 INFO mapred.LocalJobRunner: map task executor complete.16/12/03 23:33:22 INFO mapred.LocalJobRunner: Waiting for reduce tasks16/12/03 23:33:22 INFO mapred.LocalJobRunner: Starting task: attempt_local524341653_0001_r_000000_016/12/03 23:33:22 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 116/12/03 23:33:22 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.16/12/03 23:33:22 INFO mapred.Task:  Using ResourceCalculatorProcessTree : null16/12/03 23:33:22 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: [email protected]64accbd916/12/03 23:33:23 INFO mapreduce.Job: Job job_local524341653_0001 running in uber mode : false16/12/03 23:33:23 INFO mapreduce.Job:  map 100% reduce 0%16/12/03 23:33:53 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=334338464, maxSingleShuffleLimit=83584616, mergeThreshold=220663392, ioSortFactor=10, memToMemMergeOutputsThreshold=1016/12/03 23:33:53 INFO reduce.EventFetcher: attempt_local524341653_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events16/12/03 23:33:53 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local524341653_0001_m_000001_0 decomp: 86 len: 90 to MEMORY16/12/03 23:33:53 INFO reduce.InMemoryMapOutput: Read 86 bytes from map-output for attempt_local524341653_0001_m_000001_016/12/03 23:33:53 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 86, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->8616/12/03 23:33:53 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local524341653_0001_m_000000_0 decomp: 87 len: 91 to MEMORY16/12/03 23:33:53 INFO reduce.InMemoryMapOutput: Read 87 bytes from map-output for attempt_local524341653_0001_m_000000_016/12/03 23:33:53 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 87, inMemoryMapOutputs.size() -> 2, commitMemory -> 86, usedMemory ->17316/12/03 23:33:53 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning16/12/03 23:33:53 INFO mapred.LocalJobRunner: 2 / 2 copied.16/12/03 23:33:53 INFO reduce.MergeManagerImpl: finalMerge called with 2 in-memory map-outputs and 0 on-disk map-outputs16/12/03 23:33:53 INFO mapred.Merger: Merging 2 sorted segments16/12/03 23:33:53 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 162 bytes16/12/03 23:33:53 INFO reduce.MergeManagerImpl: Merged 2 segments, 173 bytes to disk to satisfy reduce memory limit16/12/03 23:33:53 INFO reduce.MergeManagerImpl: Merging 1 files, 175 bytes from disk16/12/03 23:33:53 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce16/12/03 23:33:53 INFO mapred.Merger: Merging 1 sorted segments16/12/03 23:33:53 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 165 bytes16/12/03 23:33:53 INFO mapred.LocalJobRunner: 2 / 2 copied.16/12/03 23:33:53 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords16/12/03 23:33:53 INFO mapred.Task: Task:attempt_local524341653_0001_r_000000_0 is done. And is in the process of committing16/12/03 23:33:53 INFO mapred.LocalJobRunner: 2 / 2 copied.16/12/03 23:33:53 INFO mapred.Task: Task attempt_local524341653_0001_r_000000_0 is allowed to commit now16/12/03 23:33:53 INFO output.FileOutputCommitter: Saved output of task 'attempt_local524341653_0001_r_000000_0' to hdfs://localhost:9000/user/vonzhou/output/_temporary/0/task_local524341653_0001_r_00000016/12/03 23:33:53 INFO mapred.LocalJobRunner: reduce > reduce16/12/03 23:33:53 INFO mapred.Task: Task 'attempt_local524341653_0001_r_000000_0' done.16/12/03 23:33:53 INFO mapred.LocalJobRunner: Finishing task: attempt_local524341653_0001_r_000000_016/12/03 23:33:53 INFO mapred.LocalJobRunner: reduce task executor complete.16/12/03 23:33:54 INFO mapreduce.Job:  map 100% reduce 100%16/12/03 23:33:54 INFO mapreduce.Job: Job job_local524341653_0001 completed successfully16/12/03 23:33:54 INFO mapreduce.Job: Counters: 35        File System Counters                FILE: Number of bytes read=54188                FILE: Number of bytes written=917564                FILE: Number of read operations=0                FILE: Number of large read operations=0                FILE: Number of write operations=0                HDFS: Number of bytes read=213                HDFS: Number of bytes written=89                HDFS: Number of read operations=22                HDFS: Number of large read operations=0                HDFS: Number of write operations=5        Map-Reduce Framework                Map input records=5                Map output records=14                Map output bytes=141                Map output materialized bytes=181                Input split bytes=222                Combine input records=0                Combine output records=0                Reduce input groups=11                Reduce shuffle bytes=181                Reduce input records=14                Reduce output records=11                Spilled Records=28                Shuffled Maps =2                Failed Shuffles=0                Merged Map outputs=2                GC time elapsed (ms)=7                Total committed heap usage (bytes)=946864128        Shuffle Errors                BAD_ID=0                CONNECTION=0                IO_ERROR=0                WRONG_LENGTH=0                WRONG_MAP=0                WRONG_REDUCE=0        File Input Format Counters                 Bytes Read=85        File Output Format Counters                 Bytes Written=89➜  hadoop-examples git:(master) ✗

查看执行的结果:

➜  hadoop-examples git:(master) ✗ ./hadoop dfs -ls outputDEPRECATED: Use of this script to execute hdfs command is deprecated.Instead use the hdfs command for it.16/12/03 23:36:42 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableFound 2 items-rw-r--r--   1 vonzhou supergroup          0 2016-12-03 23:33 output/_SUCCESS-rw-r--r--   1 vonzhou supergroup         89 2016-12-03 23:33 output/part-r-00000➜  hadoop-examples git:(master) ✗ ./hadoop dfs -cat output/part-r-00000DEPRECATED: Use of this script to execute hdfs command is deprecated.Instead use the hdfs command for it.16/12/03 23:37:03 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicablebig     1by      1data    1google  1hadoop  2hello   2learning        1papers  1step    2vonzhou 1world   1

 

 

  大数据时代Hadoop培训大数据培训培训班,就选光环大数据!


大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。 更多问题咨询,欢迎点击------>>>>在线客服

你可能也喜欢这些

在线客服咨询

领取资料

X
立即免费领取

请准确填写您的信息

点击领取
#第三方统计代码(模版变量) '); })();
'); })();