BP神经网络模型 光环大数据人工智能培训
光环大数据作为国内知名的人工智能培训的机构,帮助无数学员稳健、扎实的提升人工智能技术,来光环大数据学人工智能,高薪就业不是梦!
在感知器和线性神经网络的学习算法中,理想输出与实际输出之差被用来估计神经元连接权值的误差。当为解决线性不可分问题而引入多级网络后,如何估计网络隐含层神经元的误差就成了一大难题。因为在实际中,无法知道隐含层的任何神经元的理想输出值。Rumelhart,McClelland和他们的同事们洞察到了神经网络信息处理的重要性,并于1982年成立了一个PDP小组,研究并行分布式信息处理方法,探索人类认知的微结构。1985年他们提出了BP网络的误差反向后传BP(Back Propagation)学习算法,实现了Minsky设想的多层神经网络模型。
BP(Back Propagation)算法在于利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其它各层的误差估计。这样就形成了将输出层表现出的误差沿着与输入传送相反的方向逐级向网络的输入层传递的过程。因此,人们特将此算法称为误差反向后传算法,简称BP算法。使用BP算法进行学习的多级非循环网络称为BP网络,属于前向神经网络类型。虽然这种误差估计本身的精度会随着误差本身的“向后传播”而不断降低,但它还是给多层网络的训练提供了比较有效的办法,加之多层前向神经网络能逼近任意非线性函数,在科学技术领域中有广泛的应用,所以,多年来该算法一直受到人们广泛的关注。
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。 更多问题咨询,欢迎点击------>>>>在线客服!