您现在的位置:主页 > 大数据资讯 > 教你玩转大数据分析

教你玩转大数据分析

2017-05-02 17:20

  如今我们处在一个人人谈论大数据的时代。为何大数据如此火?就是因为数据蕴含无限价值。而这个价值如何挖掘却是个费解的难题。一些企业已经意识到这一点,开始拥抱大数据。下面介绍一些国内外利用大数据创造价值的代表案例。
  大数据帮零售企业制定促销策略
  北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。
  定价团队的分析围绕着三个关键维度:
  数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。
  多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。
  速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。
  透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。
  电信公司通过大数据分析挽回核心客户
  法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。
  大数据帮能源企业设置发电机地点
  丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。
  电商企业通过大数据制定销售战略
  与外国同行相比,国内最大母婴电商宝宝树的办法更简单直接,它直接购买了一款数据可视化分析软件永洪BI。这个软件可以快速分析海量数据,快速响应不同需求,即时生成复杂报表。宝宝树在永洪BI平台上,通过拖拉拽操作,生成关联不同指标的分析模型,包括环比、同比、用户快照分析、沉睡率、唤醒率、平均回购周期等。
  有了这些关键数据后,宝宝树的业务团队再来做更进一步的分析,比如上周有多少新用户?推的新品收入怎样?上月的新用户这个月的购买表现如何?用户的平均回购周期相对环比是缩短了还是延长了?各渠道引流占比有何变化?……基于对这些问题的全面回答,他们不断制定和调整产品和销售战略。
  一次,宝宝树发现关键词排序报表上多了污染这个词,就想到空气净化器可能会火,于是在B端找到客户投放广告,大获成功。现在空气净化器市场基本被母婴电商垄断。
  从上文的案例中可以看出,大数据领域的价值创造机会因行业而异。在零售业,先进的分析方法往往与战略相得益彰,涵盖促销增效、定价、门店选址、市场营销等多个领域。而在能源行业,大数据的价值创造重点更体现在对实体资产(如设备和工厂)的优化上。在金融服务业,大数据的应用可能会体现在风险评分、动态定价以及为ATM和分行网点寻找最佳地点等方面。而在保险业,大数据的价值可能体现在防范理赔欺诈、优化保险金给付以及跟踪驾驶行为等方面。
  总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。